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Abstract
Large language models have developed at a
breathtaking pace, quickly advancing in their abil-
ity to generate, summarize, and work with long
and short-form text. As these advances become
further integrated into society, however, it be-
comes necessary to question and evaluate how
well these models are actually capable of true rea-
soning, rather than simply mimicking their large
training corpora. We argue that eliciting reason-
ing from language models is the new ”explain-
ability method” and introduce CReDETS, a novel
and first-of-its-kind causal reasoning dataset with
annotated hand-written explanations. We bench-
mark the latest and most powerful generation of
transformer neural network models GPT-3, GPT-
3.5 (chatGPT), and GPT-4 and discuss their accu-
racy, coherence, and consistency. Our staggering
results show that even the most recent LLMs have
stark weaknesses in reasoning ability that must
be ameliorated before they can be integrated with
public-facing applications worldwide.

1. Introduction
1.1. The State of New Models

In recent times, Large Language Models have taken much of
the public by storm, with their abilities rapidly advancing to
include text generation, summarization, question answering,
and much more. ChatGPT [16] and GPT4 [15] have sky-
rocketed in use to become the fastest-growing technology
products of all time [5], and they created significant partner-
ships with industry players, including Microsoft Bing [2],
Duolingo [13], Instacart [11], Snapchat [14], and countless
other products that put them face to face with customers.
The outputs of these models come face to face with vulner-
able populations [7] and are often responsible for critical
decision-making processes.
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Some of the notable advances associated with these models
include Few-shot Learning, Improved Language Modeling,
Enhanced Zero-shot Learning, Context-aware Conversa-
tional AI, Knowledge Retrieval and Reasoning, and Trans-
fer Learning. Despite their impressive abilities, however,
Large Language Models suffer from several behaviors that
can prove dangerous to users treating them as ”oracles” and
suggest that any ”reasoning” demonstrated by the models is
not genuine and simply an unreliable mimicry of large-scale
training data. As these models are being integrated into im-
pactful parts of society, it is thus urgent that we gain insight
into the step-by-step ”reasoning processes” taken by LLMs
to arrive at their outputs.

1.2. The Disconnect Between Current Explainability
Methods and LLMs

A 2017 survey by Chakraborty et al. [4] suggests that ex-
plainability refers to a complete output, where a model re-
sponse is accompanied by all relevant parts of the input used
for the reasoning behind its decision, while interpretability
refers to the quality of an explanation based on how a human
interprets it, but as is common in practice and literature, we
will use the terms mostly interchangeably.

Still, we must recognize that even Chakraborty’s definition
of explainability proves hard to apply to large language
models.

Post-hoc explainability methods, which aim to provide in-
terpretability for model predictions after they have been
generated, often struggle to provide effective explanations
for large language models like GPT-3.5. There are several
key reasons for this:

Complexity and non-linearity: Large language models like
GPT-3.5 are composed of millions or even billions of pa-
rameters, making them highly complex and non-linear [18].
This complexity makes it difficult for post-hoc explainabil-
ity methods to meaningfully disentangle the relationships
between input features and model predictions. Many tradi-
tional methods, such as LIME [19] or SHAP [12], rely on
locally linear approximations, which may not adequately
capture the intricate relationships learned by large language
models.

• Input representation: Large language models use sub-
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word tokenization techniques to represent text inputs.
This leads to variable-length input representations de-
pending on the tokens present in the input text. Post-
hoc explainability methods, which typically assume
fixed-length feature spaces, may struggle to adapt to
such variable-length input representations.

• Self-attention mechanisms: Transformer architectures,
which underpin models like GPT-3.5, rely heavily on
self-attention mechanisms to capture long-range depen-
dencies in the input text [22] These self-attention mech-
anisms enable the model to weight different parts of
the input differently, making the relationship between
input and output even more complex. This complexity
make it difficult to disentangle and interpret the indi-
vidual contributions of each parameter to the model’s
output [1]

Above all else, it is necessary to shift the paradigm of ex-
plainability when considering Large Language Models be-
cause of one simple fact - everyday users of LLMs such as
GPT3.5 and GPT4 do not have access to the inner work-
ings of the architecture. Even if we were able to develop
post-hoc explanation tools that worked on LLMs such as
GPT4, normal users of the product only have access to an
API output. With nothing but access to an input and an
output of the AI model, we argue we must shift the way
we think about aiming for explainability with the arrival of
LLMs and arguably higly sophisticated intelligent models
[3].

2. A new paradigm for ”Explainability” -
Reasoning in Language Models

We argue that explainability in language models is about ex-
tracting reasoning from the model, whether through prompt-
ing [6], one shot [21]/few shot learning [17], etc. Reasoning
is a cognitive process that involves drawing conclusions
based on available information, often through logical steps
or inferences. By focusing on eliciting the model’s reason-
ing, we can better understand how a model processes and
manipulates information to arrive at its conclusions. This
approach allows us to extract insights into the model’s in-
ternal decision-making processes, thus enabling a deeper
understanding of the model’s behavior.

In order to fully trust that the reasoning a LLM outputs for
a given prompt can be used as evidence for its true internal
workings, however, we need to have faith in the reasoning
abilities of language models. We need to measure how well
LLMs can explain their ”thinking” - how accurate is their
reasoning?

Kojima et al. [9] suggests that simply appending the phrase
”Let’s think step by step” to any GPT3 prompt induces the

model into provide more accurate answers and include the
context it uses to extract more accurate answers. OpenAI
has claimed, however, that with the arrival of GPT3.5 (Chat-
GPT) and GPT4 also comes advanced reasoning abilities
and a lesser need to engineer prompts to ”elicit” reasoning.

In this paper, we present a thorough analysis of such claims
and present a new dataset CReDETS and metrics to measure
explaination and reasoning ability of these models.

3. Introduction to CReDETS
Although there are datasets such as LogiQA [10] for measur-
ing general logic abilities of large language models through
open ended question and answering benchmarks, there is
lack of data sources that explicitly focus on complex causal
reasoning Q&A and include high quality explanations of
those answers as well.

To this end, we introduce CReDETS, the Causal REasoning
Dataset and Explanation Test Suite, a novel, first-of-its-kind
causal reasoning dataset with hand-annotated explanations.
We hope that the introduction of this dataset will allow re-
searchers to continue to evaluate and improve the reasoning
abilities of various generations of language models.

In aiming to select questions that would best capture a
model’s causal reasoning ability, we analyzed several pro-
fessional and standardized exams and decided upon the
Law School Admissions Test (LSAT). The LSAT is one of
the only professional tests that doesn’t require any subject
matter knowledge, and thus is a perfect basis for a causal
reasoning dataset. These professional exam questions are
written by philosophy and logic experts to specifically mea-
sure causal reasoning ability.

We curated 442 samples from the Logic Games section of
the LSAT, a section that we specifically chose because of its
completely self-contained nature (no external information is
required to solve each question) and explicit focus on causal
reasoning. As shown in Figure 1, each question is based on
a premise involving a set of characters and rules that define
relationships between them.

For each question, we include not only the question, answer
choices, and correct answer, but also a hand-written ex-
planation for each question, a unique differentiation of our
dataset with respect to all others in the field such a LogiQA
[10].

CReDETS enables the measurement of both causal rea-
soning accuracy and explanation with questions that are
pre-vetted by law and philosophy experts, completely self
contained, and meant to be solved in quick time periods. It is
a first-of-its-kind dataset that includes human-annotated
explanations for each causal reasoning question and an-
swer pair. This tests the capabilities of language models
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Figure 1. Structure of LSAT Logic Games Questions

to not just choose the right answer options (MCQ) but
also to explain reasoning for each question.

3.1. Sourcing and Structure of CreDeTS

We hand-curated and processed 442 questions from a vari-
ety of online sources, including Varsity Tutors [20]. The
questions and their corresponding explanations are written
and vetted by professors and law school admissions pro-
fessionals around the country. Each question was analyzed
and categorized into one of 5 problem types: Grouping,
Sequencing, Four/Five Variable, Three Variable, and Two
Variable. The distribution of problem types in the prelimi-
nary dataset is shown in Figure 2 below.

Figure 2. CReDETS Dataset - Distribution of Question Categories
(Total Questions: 442)

Each sample was separated into a premise, question, set of
answer choices, correct answer, and explanation, organized
into a JSON file structure as shown in Figure 3.

Further examples can be found in the appendix.

Figure 3. Example JSON Entry - CReDETS Dataset

4. LLM Results on CReDETS
The CReDETS dataset is a novel, first-of-its-kind dataset
that allows us to benchmark both causal reasoning ability
and ability to explain a model’s reasoning. In order to see
some real life results on CReDETS, we ran 10 trials of
the 442 questions in the preliminary dataset. Questions
were tested on GPT 3, 3.5, and 4 via API calls. In this
section, we show some examples of our results, discuss their
accuracy and consistency, analyze common errors found
in the generated text, and discuss the implications of our
results.

4.1. Examples

Figure 4. A question sampled from the CReDETS dataset and the
responses of GPT 3, GPT 3.5, and GPT 4.

4.2. Accuracy

In order to measure the accuracy of our three test models
- GPT3, GPT3.5, and GPT4 - on the questions in the CRe-
DETS dataset, we ran 10 trials of the 442 questions. Each
question was run via a separate API call. The results can be
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seen in table 1 below.

Table 1. Test accuracies of GPT3, GPT3.5, and GPT4 on the ques-
tions in preliminary CReDETS Dataset. Each trial of 442 questions
was run 10 times to measure consistency and average accuracy.

Model
GPT 3 GPT 3.5 GPT 4

Trial Average 0.198 0.207 0.248
Trial 1 .199 .205 .278
Trial 2 .201 .210 .282
Trial 3 .192 .212 .291
Trial 4 .196 .203 .271
Trial 5 .208 .213 .269
Trial 6 .205 .210 .264
Trial 7 .199 .201 .280
Trial 8 .199 .199 .271
Trial 9 .187 .208 .273
Trial 10 .196 .212 .271

As we see in Table 1, all three models (GPT3, GPT3.5,
GPT4) perform quite poorly on the CReDETS benchmark.
GPT 3 and GPT 3.5 display accuracies close to 0.2 (.198
and .207, respectively), which is quite close to a 0.2 ran-
dom chance decision, given that there are 5 multiple choice
answers. These models also perform quite erratically - as
we will discuss later, running each question several times
yielded several different answers. While these differences
mostly averaged out over all 10 trials and 442 questions,
we can still see the inconsistency of these models in the
accuracy numbers (in the table and visually displayed in
Figure 5).

GPT 4’s performance is an improvement to its predecessors
- it correctly answers on average 1 in 4 questions, which,
while not at all close to human-level accuracy, is a marked
improvement from the 1-in-5 accuracy of GPT 3 and GPT
3.5. Most importantly, GPT 4 displays increased levels
of consistency - running the same question multiple times
results in the same one (or two) answers, which we can see
by the general similarity and smoothness of the accuracies in
the GPT 4 column of Table 1 and the increased smoothness
of the GPT 4 results in Figure 5. We will elaborate on this
consistency in Section 4.3.

4.3. Consistency

When it comes to using reasoning ability as a conduit to
elicit reasoning from large language models, it is crucial that
there is some consistency in the text results they generate.
If we run the same question 5 different times, will we get
five different answers? Even if we get the same (correct or
incorrect) answer, are the steps the model takes to get to the
final answer similar? If the model lacks this consistency, it
is difficult to trust that any model output can be used as a

Figure 5. Test accuracies of GPT3, GPT3.5, and GPT4 on the 442
questions in preliminary CReDETS Dataset over 10 trials.

tool to ”explain” the model’s ”decision making”.

As we can see in Table 1, the number of questions that GPT
3 and GPT 3.5 answer correctly over the 10 trials varies
more than the number of questions that GPT 4 answers
correctly. This suggests that GPT 4 is significantly more
consistent in its results than GPT 3 and GPT 3.5, even if the
results are incorrect.

To analyze this further, we make a plot of the average num-
ber of distinct final answer choices made over the 10 trials
by each of our three models. (If, for example, over 10 trials
on a question, my model answered (A), (B), (C), (C), (B),
(A), (A), (C), (B), (C), the number of distinct final answer
choices would be 3).

Figure 6. Average Number of Distinct Final Answer Choices Made
Over 10 Trials by GPT 3, GPT 3.5, and GPT 4

As we can see in Figure 6, GPT 4 displays a great deal
higher consistency than GPT 3 and 3.5. When we run a
question 10 times, it usually outputs the same answer, even
if that answer is incorrect. When the final generated answer
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choice is incorrect, manual analysis shows that the mistakes
made by the model are similar in almost all of the generated
ouptuts. This consistency in GPT 4 bodes well for our
ability to truly use generated reasoning output to interpret
the decision-making process of GPT 4, lending some sense
of ”interpretability” to these outputs.

5. Error Analysis
We hand-analyze the results outputted by GPT3, GPT3.5,
and GPT4 on the same, randomly selected set of 25 ques-
tions. We found that there were three main categories of
errors made by the model. We describe them below.

Factual error relating to problem premise. For example,
if the premise of a question states that at most two people
can be on a dance committee, and the model output places 4
people on a dance committee, this error would be classified
as ”factual” due to its misunderstandings of facts stated in
the premise of the question. An example is shown below in
Figure 7, where the premise of the question clearly states
that there are there are two tickets for the Saturday perfor-
mance, but the GPT-generated result starts by stating that
only one person can attend each show, which is factually
incorrect.

Figure 7. The text colored in red displays a Factual Error.

Causality Error. These errors occur when the model makes
decisions based on incorrect causality statements. If the
problem premise states that A always comes after B, and
the model suggests a situation in which A comes before
B, we would register a Causality error. An example is
shown below in Figure 8. The text colored in red displays
a causality error because there are several statements made
that do not causally follow from the rules provided in the
question. The model says the following: ”Since D is already
served on Tuesday or Wednesday with free wine, C cannot
be served on Tuesday or Wednesday.” The premise of the
question states that ”free wine is served with C or D, but
not for both, and free wine is served only on Tuesday or
Wednesday”. The premise of the question does not imply

that just because D is served on Tuesday or Wednesday with
free wine, C cannot be served on Tuesday or Wednesday.
This is a causality error.

Figure 8. The text colored in red displays a Causality Error.

Self Contradiction. The outputs of LLMs (especially more
recent ones, such as GPT4) when given reasoning problems
are usually lengthy statements. Oftentimes, these models
will make a statement in their output that directly contradicts
something that was previously generated. We categorize
these errors as ”self-contradictory”. Figure 9 shows an ex-
ample with several self-contradiction errors. In the text
colored purple, we can see that the explanation says that
peppers are on a later pizza than sausage, but the answer
it gives is not on a later pizza than sausage. The text high-
lighted in red outputs an answer choice that pairs sausage
and anchovies as well as peppers and bacon, but the choice
is rejected because the anchovies cannot be paired with pep-
pers, a pairing that was never outputted. The text highlighted
green says includes an explanation that sausage and bacon
are on the last pizza, which is contradictory to the answer
choice the model outputted. Lastly, the text highlighted in
orange mentions that only choices (B) and (E) work, but the
model previously outputted that choice (D) worked as well,
so this statement is self-contradictory as well.

We randomly sample 25 questions from the CReDETS
dataset and manually analyze results produced by GPT 3,
GPT 3.5, and GPT 4. We categorize errors made by the
model into the following groups: factual errors, causality
errors, and self-contradiction errors. The distribution of
errors is shown in Figure 10 below.

We can see in the figure that all three models have a large
tendency to make causality errors (even GPT 4, despite its
higher accuracy and consistency). GPT 4 makes less factual
errors than its predecessors, but it has high rates of self-
contradiction, a stark reminder that despite language models
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Figure 9. The text colored in purple, red, green, and orange display
Self Contradiction Errors.

Figure 10. Average Number of Distinct Final Answer Choices
Made Over 10 Trials by GPT 3, GPT 3.5, and GPT 4

achieving prolific results, they are still probabilistic algo-
rithms that output their results word by word, as opposed
to a more big-ideas / long term reasoning framework that
humans use.

Interestingly, the causality errors made by GPT 4 were more
likely than those made by its predecessors to belong to an
output that resulted in an incorrect final answer. As we can
see in Table 2 below, out of the 25 asked questions, GPT
3 incorrectly answered 21 questions, GPT 3.5 incorrectly
answered 20, and GPT 4 incorrectly answered 18. The
number of Causality Errors made in outputs that resulted
in the correct final answer, however, decreased in GPT 4’s
output, another sign that there is a higher probability that
we can trust the reasoning output of GPT 4 to be a form of
interpretability for the model’s decisions.

Table 2. Causality Errors made by GPT 3, 3.5, and 4 in outputs that
generated the wrong final answer versus outputs that generated the
correct final answer. Manually tabulated over 25 questions.

Causality Errors
Incorrect Answers in Correct Answers in Incorrect Answers Total Causality Errors

GPT 3 21 3 21 24
GPT 3.5 20 3 22 25
GPT 4 18 1 19 20

6. Discussion
Our results on the preliminary CReDETS dataset show that
while cutting-edge models such as GPT 4 display impres-
sive, coherent language modeling abilities, they have a long
way to go before coming close to reaching human-ability
levels of reasoning.

All three models show poor accuracies on the CReDETS
reasoning benchmark questions - with each question having
5 multiple choice answer possibilities, GPT 3, GPT 3.5, and
GPT 4 displayed average accuracies of .20, .21, and .25
respectively.

Earlier models, especially GPT 3 and occasionally GPT
3.5, prove to be inconsistent, often generating distinct final
answer choices if run on the same problem many times,
though this problem is significantly ameliorated in GPT 4.

Outputs by all three language models are riddled with self-
contradictions and factual errors, a fact which reminds us
that despite their prowess and size, Large Language Models
are in fact just that - models. They compose an output by
statistically predicting one word at a time - true reasoning,
however, involves thinking several steps ahead and making
logical decisions by concept instead of on a word-by-word
basis. The high rate of causality errors shown by the GPT
models reinforces this notion and makes clear the need for
work evaluating how LLMs can improve their base causal
reasoning ability.

At this stage, our results show that it is difficult to claim
that even today’s most powerful language models are
capable of true reasoning. Our results showed generated
text that was riddled with self-contradictions, causality
errors, hallucinations, factual errors, and several other
mistakes that suggest that large language models are
likely simply parroting their powerfully large training
corpora. Major improvements need to be made before
we can recognize their abilities as true reasoning, and as
LLMs are integrated deeper into our society, great care
needs to be taken to ensure that false abilities of ”reason-
ing” do not result in dangerous mistakes or implications.

When thinking about how reasoning can be useful in our
paradigm of explainability, it is interesting to note how our
results have improved as we test GPT 3, 3.5, and 4. The
accuracy, though low for all three models, improved as the
parameter size increased. The coherency and intricacy of
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Accurate Consistent Coherent
GPT 3
GPT 3.5
GPT 4

Table 3. Visual depiction of the Accuracy, Consistency, and Co-
herency of GPT 3, 3.5, and 4 on the CReDETS dataset

produced output improved significantly from GPT 3 to GPT
3.5 to GPT 4. The consistency of the models also improved
significantly as the number of parameters increased.

These Large Language Models have shown remarkable im-
provement and give credence to the hypothesis [8] that in-
creasing the number of model parameters will lead to more
accurate modeling of human language.

This improvement in coherency and consistency that GPT
4 has shown demonstrates the possibility that the reason-
ing steps outputted by the model actually provide a cor-
rect, reasonable explanation of an internal ”decision pro-
cess”. (In GPT 3, for instance, there were several questions
where the model happened to get a correct final answer
but the reasoning steps outputted had causal, factual, and
self-contradiction errors. In this case, we cannot take the
outputted reasoning steps to provide any semblance of in-
terpretability.) As we continue to explore how to derive a
sense of explainability from language models where, for the
most part, we only have access to an input and output (API
call), the improved results displayed by GPT 4 suggest that
the reasoning steps outputted by a model could perhaps, in
the future, be used as a source of interpretability.

It is our hope that the novel CReDETS dataset, with its
unique combination of hand-written explanations and ques-
tions designed explicitly to test reasoning ability, will allow
researchers to continue to study and evaluate the evolving
reasoning abilities of language models.
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A. CReDETS Dataset Examples
Below, we include some further examples of data points from the CReDETS dataset.

Figure 11. Example JSON Entry - CReDETS Dataset

Figure 12. Example JSON Entry - CReDETS Dataset

Figure 13. Example JSON Entry - CReDETS Dataset

Figure 14. Example JSON Entry - CReDETS Dataset


